Recovering Marginal Effects and Standard Errors of Interactions Terms Pt. II: Implement and Visualize
Friday, March 9, 2012 at 08:36PM
Frank Davenport in R, Stats

In the last post I presented a function for recovering marginal effects of interaction terms. Here we implement the function with simulated data and plot the results using ggplot2.  

 

 

#---Simulate Data and Fit a linear model with an interaction term
y<-rnorm(100,5,1)
x<-rnorm(100,5,1)
d<-data.frame(y=y,x=x,fac=sample(letters[1:3],100,replace=T))
 
mod<-lm(y~x*fac,data=d)
 
#========================================================
 
#---Extract the Main Effects, including the baseline, into a data.frame
dusp<-funinteff(mod,'x') #returns a data.frame of the Estimate and Standard Error, row.names correspond to the variables
 
#----Now Set the data up to visualize in ggplot-----
library(ggplot2)
#------Quick ggplot (move into graph code later)
#quick convenience function to compute significance at .95
funsig<-function(d){
	tstat<-abs(d$b/d$se)
	sig<-ifelse(tstat>=1.96,'yes','no')
	return(sig)
}
 
 
names(dusp)[1:2]<-c('b','se') #change the names to to make typing easier
 
#Add confidence intervals and signficance test
dusp$hi<-dusp$b+1.96*dusp$se
dusp$lo<-dusp$b-1.96*dusp$se
dusp$sig95<-funsig(dusp)
 
dusp$var<-row.names(dusp)
 
 
pd<-dusp
 
p1<-ggplot(data=pd,aes(x=var,y=b,shape=sig95))
p1<-p1+geom_hline(yintercept=0,col='grey')+geom_line()
p1<-p1+geom_pointrange(aes(ymin=lo,ymax=hi)) #+coord_flip() #uncomment coord_flip to switch the axes
p1<-p1+scale_y_continuous(name='Marginal Effect of Interaction Terms')

Created by Pretty R at inside-R.org

 

Article originally appeared on (http://www.frankdavenport.com/).
See website for complete article licensing information.